"algorithms" 的音标为 [ˌælmɪˈɡeɪtrz],基本翻译为"算法"或"算法系列"。速记技巧可以考虑将其拆分为 "al"(代表 "算法" 的首字母)和 "mig"(代表 "系列" 的音译),从而快速记忆该词。
以下是一些英文算法(algorithms)的词源、变化形式和相关单词的描述,供您参考:
词源:算法这个词源自拉丁语“algorithmum”,意为“步骤”或“算法”。
变化形式:algorithm的复数形式为algorithms,现在分词形式为algorithmizing,过去式为algorithmized,过去分词为algorithmized。
相关单词:
1. programming:与算法密切相关,指编写计算机程序的过程。
2. algorithmics:算法学,研究算法的理论和方法。
3. computational:与算法有关,指可以通过计算机实现的。
4. optimization:与算法有关,指通过算法实现最优化。
5. algorithm-based:基于算法的,指依赖于算法的决策或方法。
6. parallel algorithm:并行算法,指可以在多台计算机或多个处理器上同时执行的算法。
7. recursive algorithm:递归算法,指通过递归方式解决问题的算法。
8. iterative algorithm:迭代算法,指通过反复迭代方式解决问题的算法。
9. divide-and-conquer algorithm:分治算法,指将问题分解为更小的子问题,再逐一解决的方法。
10. genetic algorithm:遗传算法,是一种优化搜索算法,基于达尔文的进化理论,通过模拟自然选择和遗传过程来寻找最优解。
以上单词都与算法密切相关,涵盖了算法的不同方面和应用。
常用短语:
1. algorithmically complex
2. algorithmically simple
3. divide and conquer
4. greedy algorithm
5. dynamic programming
6. backtracking
7. greedy strategy
8. divide and conquer strategy
双语例句:
1. 算法复杂度分析是评估算法性能的重要手段。
Analysis of algorithm complexity is an important means of evaluating algorithm performance.
2. 贪心算法是一种常用的优化策略,适用于解决一些特定问题。
Greedy algorithm is a commonly used optimization strategy that is applicable to solving certain problems.
3. 动态规划是一种常用的算法设计方法,用于解决具有重叠子问题的问题。
Dynamic programming is a commonly used algorithm design method that is used to solve problems with overlapping subproblems.
4. 算法设计需要考虑到问题的具体性质,不同的算法适用于不同的问题。
The design of algorithms needs to take into account the specific nature of the problem, and different algorithms are suitable for different problems.
5. 分治策略在很多算法中都有应用,如排序、搜索等。
Divide and conquer strategy is applied in many algorithms, such as sorting and searching.
6. 算法的效率是衡量其优劣的重要标准,需要不断优化和改进。
The efficiency of algorithms is an important criterion for measuring their merit, and they need to be continuously optimized and improved.
7. 算法的设计和实现需要具备扎实的数学基础和编程能力。
The design and implementation of algorithms require solid mathematical foundations and programming skills.
英文小作文:
Title: The Importance of Algorithms in Modern Life
Algorithms play a crucial role in modern life, from the way we communicate to the way we store and process information. From search engines to financial trading, algorithms are at the heart of many critical systems and processes. They are used to automate tasks that would otherwise require human intervention, reducing errors and increasing efficiency. Algorithms can also be used to solve complex problems through innovative approaches such as machine learning and artificial intelligence. However, algorithms are not without their challenges, as they can be vulnerable to security threats and can sometimes produce unpredictable results. Therefore, it is essential to constantly improve and refine algorithms to ensure they are as effective and reliable as possible in a rapidly changing world.