boundary stress的音标为["baɪndərɪst] ,基本翻译为“边界应力”,速记技巧为:boundary(边界)-i(我)-st(是)谐音为stress(应力)。
Boundary stress(边界应力)这个词的英文词源可以追溯到拉丁语“boundary”和“stress”,表示在物体边界上的应力。这个词在英语中的变化形式包括复数形式“boundaries stresses”和过去式和过去分词形式“stressed”。
相关单词:
1. Stress(应力):这个词源于拉丁语,意为“挤压”或“紧张”。在现代工程和物理学中,应力是指物体内部由于受到外部压力或内部结构变化而产生的张力。
2. Strain(应变):与应力相对应,应变是指物体在受到外力作用时产生的形变。这个词也源于拉丁语,意为“伸展”或“变形”。
3. Friction(摩擦):边界摩擦是指两个物体表面之间的摩擦,特别是在边界上相互作用时的摩擦。这个词源于拉丁语“fricere”,意为“粘附”或“黏着”。
4. Compression(压缩):这个词来源于拉丁语“compressus”,意为“压缩”或“紧缩”。在工程和物理学中,压缩通常是指物体受到外部压力而产生的形变。
5. Tension(张力):张力是指物体内部由于受到外部压力或内部结构变化而产生的张力。这个词源于拉丁语“tendere”,意为“拉紧”或“绷紧”。
6. Deformation(形变):形变是指物体在外力作用下的变形。这个词来源于拉丁语“deformare”,意为“变形”或“改变形状”。
7. Fracture(断裂):边界断裂通常指物体在受到足够大的外力作用时,由于内部应力超过其强度而发生的断裂。这个词来源于拉丁语“fractura”,意为“断裂”或“破裂”。
8. Stress relief(应力释放):当物体受到应力作用时,通过适当的措施来释放应力可以避免可能的破坏。这个词通常用于描述工程和机械设计中采取的措施。
9. Boundary condition(边界条件):边界条件是指物体在特定边界处必须满足的条件,通常与应力、应变、温度等物理量有关。这个词在工程和物理学中广泛应用。
10. Stress analysis(应力分析):应力分析是对物体内部应力的分布、大小和方向进行计算和分析的过程,通常用于预测和防止结构破坏。
boundary stress常用短语:
1. boundary layer stress
2. boundary condition stress
3. boundary tension stress
4. boundary layer shear stress
5. interfacial tension stress
6. stress boundary
7. stress boundary layer
双语例句:
1. The boundary layer of the fluid experiences high shear stress. 流体边界层经历高剪应力。
2. The stress boundary between the two materials is difficult to detect. 两种材料之间的应力边界难以检测。
3. The stress boundary layer is a critical factor in the design of high-performance engines. 高性能发动机设计中应力边界层是一个关键因素。
4. The interfacial tension stress between two liquids determines the rate of their mutual diffusion. 两种液体之间的界面张力应力决定了它们相互扩散的速度。
5. The shear stress in the boundary layer can be reduced by using a more effective cooling system. 通过使用更有效的冷却系统,可以降低边界层中的剪应力。
6. The stress in the stress boundary layer is a critical factor in determining the strength of a material. 应力边界层中的应力是决定材料强度的关键因素。
7. The stress on the surface of a material can be reduced by using a protective coating. 使用保护涂层可以降低材料表面的应力。
英文小作文:
Stress and Boundary Layer
Stress is a critical factor in many engineering applications, especially in fluid mechanics where it affects the behavior of fluids and their interactions with surfaces. One particular type of stress that is important in fluid mechanics is the boundary layer stress, which refers to the stress generated by the interaction of a fluid with a surface.
When a fluid flows over a surface, it experiences a shear stress due to the difference in velocity between the fluid and the surface. This shear stress can lead to turbulence and other undesirable effects in the fluid flow. In order to minimize these effects, engineers design systems with specific boundary layer characteristics, such as using appropriate flow patterns and surface textures.
Similarly, the stress boundary layer refers to the layer of fluid near a surface that experiences high levels of stress due to interactions with other fluids and surfaces. The stress boundary layer plays an important role in determining the flow patterns and rates of heat transfer in systems such as engines, turbines, and heat exchangers. Understanding and controlling this layer is crucial for optimizing the performance of these systems.
In summary, stress and boundary layer play important roles in many engineering applications, and understanding their interactions is crucial for designing and operating effective systems.